Skip to main content

DSPy Cheatsheet

This page will contain snippets for frequent usage patterns.

DSPy DataLoaders

Import and initializing a DataLoader Object:

import dspy
from dspy.datasets import DataLoader

dl = DataLoader()

Loading from HuggingFace Datasets

code_alpaca = dl.from_huggingface("HuggingFaceH4/CodeAlpaca_20K")

You can access the dataset of the splits by calling key of the corresponding split:

train_dataset = code_alpaca['train']
test_dataset = code_alpaca['test']

Loading specific splits from HuggingFace

You can also manually specify splits you want to include as a parameters and it'll return a dictionary where keys are splits that you specified:

code_alpaca = dl.from_huggingface(
"HuggingFaceH4/CodeAlpaca_20K",
split = ["train", "test"],
)

print(f"Splits in dataset: {code_alpaca.keys()}")

If you specify a single split then dataloader will return a List of dspy.Example instead of dictionary:

code_alpaca = dl.from_huggingface(
"HuggingFaceH4/CodeAlpaca_20K",
split = "train",
)

print(f"Number of examples in split: {len(code_alpaca)}")

You can slice the split just like you do with HuggingFace Dataset too:

code_alpaca_80 = dl.from_huggingface(
"HuggingFaceH4/CodeAlpaca_20K",
split = "train[:80%]",
)

print(f"Number of examples in split: {len(code_alpaca_80)}")

code_alpaca_20_80 = dl.from_huggingface(
"HuggingFaceH4/CodeAlpaca_20K",
split = "train[20%:80%]",
)

print(f"Number of examples in split: {len(code_alpaca_20_80)}")

Loading specific subset from HuggingFace

If a dataset has a subset you can pass it as an arg like you do with load_dataset in HuggingFace:

gms8k = dl.from_huggingface(
"gsm8k",
"main",
input_keys = ("question",),
)

print(f"Keys present in the returned dict: {list(gms8k.keys())}")

print(f"Number of examples in train set: {len(gms8k['train'])}")
print(f"Number of examples in test set: {len(gms8k['test'])}")

Loading from CSV

dolly_100_dataset = dl.from_csv("dolly_subset_100_rows.csv",)

You can choose only selected columns from the csv by specifying them in the arguments:

dolly_100_dataset = dl.from_csv(
"dolly_subset_100_rows.csv",
fields=("instruction", "context", "response"),
input_keys=("instruction", "context")
)

Splitting a List of dspy.Example

splits = dl.train_test_split(dataset, train_size=0.8) # `dataset` is a List of dspy.Example
train_dataset = splits['train']
test_dataset = splits['test']

Sampling from List of dspy.Example

sampled_example = dl.sample(dataset, n=5) # `dataset` is a List of dspy.Example

DSPy Programs

dspy.Signature

class BasicQA(dspy.Signature):
"""Answer questions with short factoid answers."""

question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")

dspy.ChainOfThought

generate_answer = dspy.ChainOfThought(BasicQA)

# Call the predictor on a particular input alongside a hint.
question='What is the color of the sky?'
pred = generate_answer(question=question)

dspy.ChainOfThoughtwithHint

generate_answer = dspy.ChainOfThoughtWithHint(BasicQA)

# Call the predictor on a particular input alongside a hint.
question='What is the color of the sky?'
hint = "It's what you often see during a sunny day."
pred = generate_answer(question=question, hint=hint)

dspy.ProgramOfThought

pot = dspy.ProgramOfThought(BasicQA)

question = 'Sarah has 5 apples. She buys 7 more apples from the store. How many apples does Sarah have now?'
result = pot(question=question)

print(f"Question: {question}")
print(f"Final Predicted Answer (after ProgramOfThought process): {result.answer}")

dspy.ReACT

react_module = dspy.ReAct(BasicQA)

question = 'Sarah has 5 apples. She buys 7 more apples from the store. How many apples does Sarah have now?'
result = react_module(question=question)

print(f"Question: {question}")
print(f"Final Predicted Answer (after ReAct process): {result.answer}")

dspy.Retrieve

colbertv2_wiki17_abstracts = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.settings.configure(rm=colbertv2_wiki17_abstracts)

#Define Retrieve Module
retriever = dspy.Retrieve(k=3)

query='When was the first FIFA World Cup held?'

# Call the retriever on a particular query.
topK_passages = retriever(query).passages

for idx, passage in enumerate(topK_passages):
print(f'{idx+1}]', passage, '\n')

DSPy Metrics

Function as Metric

To create a custom metric you can create a function that returns either a number or a boolean value:

def parse_integer_answer(answer, only_first_line=True):
try:
if only_first_line:
answer = answer.strip().split('\n')[0]

# find the last token that has a number in it
answer = [token for token in answer.split() if any(c.isdigit() for c in token)][-1]
answer = answer.split('.')[0]
answer = ''.join([c for c in answer if c.isdigit()])
answer = int(answer)

except (ValueError, IndexError):
# print(answer)
answer = 0

return answer

# Metric Function
def gsm8k_metric(gold, pred, trace=None) -> int:
return int(parse_integer_answer(str(gold.answer))) == int(parse_integer_answer(str(pred.answer)))

LLM as Judge

class FactJudge(dspy.Signature):
"""Judge if the answer is factually correct based on the context."""

context = dspy.InputField(desc="Context for the prediciton")
question = dspy.InputField(desc="Question to be answered")
answer = dspy.InputField(desc="Answer for the question")
factually_correct = dspy.OutputField(desc="Is the answer factually correct based on the context?", prefix="Factual[Yes/No]:")

judge = dspy.ChainOfThought(FactJudge)

def factuality_metric(example, pred):
factual = judge(context=example.context, question=example.question, answer=pred.answer)
return int(factual=="Yes")

DSPy Evaluation

from dspy.evaluate import Evaluate

evaluate_program = Evaluate(devset=devset, metric=your_defined_metric, num_threads=NUM_THREADS, display_progress=True, display_table=num_rows_to_display)

evaluate_program(your_dspy_program)

DSPy Optimizers

LabeledFewShot

from dspy.teleprompt import LabeledFewShot

labeled_fewshot_optimizer = LabeledFewShot(k=8)
your_dspy_program_compiled = labeled_fewshot_optimizer.compile(student = your_dspy_program, trainset=trainset)

BootstrapFewShot

from dspy.teleprompt import BootstrapFewShot

fewshot_optimizer = BootstrapFewShot(metric=your_defined_metric, max_bootstrapped_demos=4, max_labeled_demos=16, max_rounds=1, max_errors=5)

your_dspy_program_compiled = fewshot_optimizer.compile(student = your_dspy_program, trainset=trainset)

Using another LM for compilation, specifying in teacher_settings

from dspy.teleprompt import BootstrapFewShot

fewshot_optimizer = BootstrapFewShot(metric=your_defined_metric, max_bootstrapped_demos=4, max_labeled_demos=16, max_rounds=1, max_errors=5, teacher_settings=dict(lm=gpt4))

your_dspy_program_compiled = fewshot_optimizer.compile(student = your_dspy_program, trainset=trainset)

Compiling a compiled program - bootstrapping a bootstraped program

your_dspy_program_compiledx2 = teleprompter.compile(
your_dspy_program,
teacher=your_dspy_program_compiled,
trainset=trainset,
)

Saving/loading a compiled program

save_path = './v1.json'
your_dspy_program_compiledx2.save(save_path)
loaded_program = YourProgramClass()
loaded_program.load(path=save_path)

BootstrapFewShotWithRandomSearch

from dspy.teleprompt import BootstrapFewShotWithRandomSearch

fewshot_optimizer = BootstrapFewShotWithRandomSearch(metric=your_defined_metric, max_bootstrapped_demos=2, num_candidate_programs=8, num_threads=NUM_THREADS)

your_dspy_program_compiled = fewshot_optimizer.compile(student = your_dspy_program, trainset=trainset, valset=devset)

Other custom configurations are similar to customizing the BootstrapFewShot optimizer.

Ensemble

from dspy.teleprompt import BootstrapFewShotWithRandomSearch
from dspy.teleprompt.ensemble import Ensemble

fewshot_optimizer = BootstrapFewShotWithRandomSearch(metric=your_defined_metric, max_bootstrapped_demos=2, num_candidate_programs=8, num_threads=NUM_THREADS)
your_dspy_program_compiled = fewshot_optimizer.compile(student = your_dspy_program, trainset=trainset, valset=devset)

ensemble_optimizer = Ensemble(reduce_fn=dspy.majority)
programs = [x[-1] for x in your_dspy_program_compiled.candidate_programs]
your_dspy_program_compiled_ensemble = ensemble_optimizer.compile(programs[:3])

BootstrapFinetune

from dspy.teleprompt import BootstrapFewShotWithRandomSearch, BootstrapFinetune

#Compile program on current dspy.settings.lm
fewshot_optimizer = BootstrapFewShotWithRandomSearch(metric=your_defined_metric, max_bootstrapped_demos=2, num_threads=NUM_THREADS)
your_dspy_program_compiled = tp.compile(your_dspy_program, trainset=trainset[:some_num], valset=trainset[some_num:])

#Configure model to finetune
config = dict(target=model_to_finetune, epochs=2, bf16=True, bsize=6, accumsteps=2, lr=5e-5)

#Compile program on BootstrapFinetune
finetune_optimizer = BootstrapFinetune(metric=your_defined_metric)
finetune_program = finetune_optimizer.compile(your_dspy_program, trainset=some_new_dataset_for_finetuning_model, **config)

finetune_program = your_dspy_program

#Load program and activate model's parameters in program before evaluation
ckpt_path = "saved_checkpoint_path_from_finetuning"
LM = dspy.HFModel(checkpoint=ckpt_path, model=model_to_finetune)

for p in finetune_program.predictors():
p.lm = LM
p.activated = False

COPRO

from dspy.teleprompt import COPRO

eval_kwargs = dict(num_threads=16, display_progress=True, display_table=0)

copro_teleprompter = COPRO(prompt_model=model_to_generate_prompts, task_model=model_that_solves_task, metric=your_defined_metric, breadth=num_new_prompts_generated, depth=times_to_generate_prompts, init_temperature=prompt_generation_temperature, verbose=False, log_dir=logging_directory)

compiled_program_optimized_signature = copro_teleprompter.compile(your_dspy_program, trainset=trainset, eval_kwargs=eval_kwargs)

MIPRO

from dspy.teleprompt import MIPRO

teleprompter = MIPRO(prompt_model=model_to_generate_prompts, task_model=model_that_solves_task, metric=your_defined_metric, num_candidates=num_new_prompts_generated, init_temperature=prompt_generation_temperature)

kwargs = dict(num_threads=NUM_THREADS, display_progress=True, display_table=0)

compiled_program_optimized_bayesian_signature = teleprompter.compile(your_dspy_program, trainset=trainset, num_trials=100, max_bootstrapped_demos=3, max_labeled_demos=5, eval_kwargs=kwargs)

Signature Optimizer with Types

from dspy.teleprompt.signature_opt_typed import optimize_signature
from dspy.evaluate.metrics import answer_exact_match
from dspy.functional import TypedChainOfThought

compiled_program = optimize_signature(
student=TypedChainOfThought("question -> answer"),
evaluator=Evaluate(devset=devset, metric=answer_exact_match, num_threads=10, display_progress=True),
n_iterations=50,
).program

KNNFewShot

from dspy.predict import KNN
from dspy.teleprompt import KNNFewShot

knn_optimizer = KNNFewShot(KNN, k=3, trainset=trainset)

your_dspy_program_compiled = knn_optimizer.compile(student=your_dspy_program, trainset=trainset, valset=devset)

BootstrapFewShotWithOptuna

from dspy.teleprompt import BootstrapFewShotWithOptuna

fewshot_optuna_optimizer = BootstrapFewShotWithOptuna(metric=your_defined_metric, max_bootstrapped_demos=2, num_candidate_programs=8, num_threads=NUM_THREADS)

your_dspy_program_compiled = fewshot_optuna_optimizer.compile(student=your_dspy_program, trainset=trainset, valset=devset)

Other custom configurations are similar to customizing the dspy.BootstrapFewShot optimizer.

DSPy Assertions

Including dspy.Assert and dspy.Suggest statements

dspy.Assert(your_validation_fn(model_outputs), "your feedback message", target_module="YourDSPyModuleSignature")

dspy.Suggest(your_validation_fn(model_outputs), "your feedback message", target_module="YourDSPyModuleSignature")

Activating DSPy Program with Assertions

Note: To use Assertions properly, you must activate a DSPy program that includes dspy.Assert or dspy.Suggest statements from either of the methods above.

#1. Using `assert_transform_module:
from dspy.primitives.assertions import assert_transform_module, backtrack_handler

program_with_assertions = assert_transform_module(ProgramWithAssertions(), backtrack_handler)

#2. Using `activate_assertions()`
program_with_assertions = ProgramWithAssertions().activate_assertions()

Compiling with DSPy Programs with Assertions

program_with_assertions = assert_transform_module(ProgramWithAssertions(), backtrack_handler)
fewshot_optimizer = BootstrapFewShotWithRandomSearch(metric = your_defined_metric, max_bootstrapped_demos=2, num_candidate_programs=6)
compiled_dspy_program_with_assertions = fewshot_optimizer.compile(student=program_with_assertions, teacher = program_with_assertions, trainset=trainset, valset=devset) #student can also be program_without_assertions